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ΠΕΡΙΛΗΨΗ 

Στην εργασία αυτή διερευνάται ένα νέο σύστημα σεισμικής μόνωσης για την προστασία 

στερεών σωμάτων, αντλώντας την έμπνευσή του από το δημοφιλές επιτραπέζιο παιχνίδι 

ποδοσφαίρου Subbuteo. Η λειτουργία του προτεινόμενου συστήματος σεισμικής μόνωσης 

βασίζεται στον μηχανισμό της κύλισης (rolling isolation system, RIS). Το στερεό σώμα είναι 

άκαμπτα συνδεδεμένο σε μία καμπύλη βάση (τόξο κύκλου), η οποία μπορεί να κυλίεται 

ελεύθερα, χωρίς να ολισθαίνει, εκτελώντας ταλάντωση γύρω από τη θέση ισορροπίας της. 

Το εγγενές χαρακτηριστικό του προτεινόμενου συστήματος είναι ότι το ίδιο το στερεό σώμα 

αποτελεί αναπόσπαστο μέρος του, επηρεάζοντας ουσιαστικά τη δυναμική του συμπεριφορά 

λόγω της χαμηλότερης θέσης του κέντρου μάζας. 

 

Λέξεις Κλειδιά: Σεισμική μόνωση, Κύλιση, Προστασία στερεών σωμάτων 

 

1 ΓΕΝΙΚΑ 

Τα συμβατικά συστήματα σεισμικής μόνωσης, τα οποία βασίζονται στον μηχανισμό της κύλισης, 

χρησιμοποιούν σφαιρικά ή κυλινδρικά κυλιόμενα στοιχεία μεταξύ της κατασκευής και της 

θεμελίωσής της για να αποσυνδέσουν τις σεισμικές δυνάμεις και να μειώσουν τη μετάδοση της 

ανεπιθύμητης εδαφικής διέγερσης [1-37]. Τα συστήματα αυτά αξιοποιούν την ικανότητα του 

μηχανισμού της κύλισης να μετατρέπει τη μεταφορική κίνηση σε περιστροφική, μειώνοντας έτσι 

τις επιταχύνσεις και τις δυνάμεις που ασκούνται στην υπερκείμενη κατασκευή. Στο προτεινόμενο 

σύστημα σεισμικής μόνωσης ο μηχανισμός αυτός ενισχύεται περαιτέρω λόγω της χαμηλότερης 

θέσης του κέντρου μάζας, γεγονός που οδηγεί σε σημαντική βελτίωση της σεισμικής του 

απόκρισης . 

Συνολικά, αυτή η εργασία παρουσιάζει μια ολοκληρωμένη μελέτη για την κατανόηση της 

συμπεριφοράς, του σχεδιασμού και της πρακτικής εφαρμογής του νέου συστήματος σεισμικής 

μόνωσης, ανοίγοντας τον δρόμο για την ευρύτερη χρήση του σε στρατηγικές σεισμικής 

προστασίας. 
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3 Καθηγητής Σ.Ε.Μ.Φ.Ε., Εθνικό Μετσόβιο Πολυτεχνείο, tsopelas@central.ntua.gr 
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2 ΕΞΙΣΩΣΗ ΙΣΟΡΡΟΠΙΑΣ 

Το σύστημα αποτελείται από (i) ένα συμπαγές, ομογενές ορθογωνικό στερεό σώμα, και (ii) μία 

καμπύλη βάση (τόξο κύκλου) η οποία είναι άκαμπτα συνδεδεμένη με το σώμα. Η κοίλη ή 

συμπαγής βάση—με κεντρική γωνία 2𝜃0 και ακτίνα 𝑅—μπορεί να κυλίεται ελεύθερα, χωρίς να 

ολισθαίνει, εκτελώντας ταλάντωση γύρω από τη θέση ισορροπίας της (βλ. Σχήμα 1).  
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Σχήμα 1: Αρχική και μετατοπισμένη κατάσταση του συστήματος μόνωσης. 

 

Για οριζόντια κίνηση του εδάφους 𝑢̈𝑔𝑥(𝑡), η εξίσωση κίνησης του συστήματος ως προς το κέντρο 

μάζας 𝐺 λαμβάνει τη μορφή [38]: 

{𝐼𝐴(𝑡) + 𝜇𝑟𝑚𝑟𝐺𝑅sgn[𝜃̇(𝑡)] sin[𝜃(𝑡)]}𝜃̈(𝑡)                                           

+𝑚𝑟𝐺𝑅{sin[𝜃(𝑡)] + 𝜇𝑟sgn[𝜃̇(𝑡)] cos[𝜃(𝑡)]}[𝜃̇(𝑡)]
2

  

                               +𝑚𝑔{𝑟𝐺 sin[𝜃(𝑡)] + 𝜇𝑟𝑅sgn[𝜃̇(𝑡)]} = −𝑚𝑢̈𝑔𝑥(𝑡){𝑅 − 𝑟𝐺 cos[𝜃(𝑡)]}, 

(1) 

όπου 𝑚 = 𝑚1 + 𝑚2 είναι το άθροισμα της μάζας του στερεού σώματος (𝑚1) και της βάσης (𝑚2), 

𝜇𝑟 είναι ο συντελεστής τριβής κύλισης, και  

𝐼𝐴(𝑡) = 𝐼𝐺 + 𝑚𝑅2 − 2𝑚𝑟𝐺𝑅 cos[𝜃(𝑡)] + 𝑚𝑟𝐺
2, (2) 
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είναι η ροπή αδράνεια μάζας του συστήματος γύρω από τον άξονα 𝑦 που διέρχεται από το σημείο 

επαφής 𝐴, τη χρονική στιγμή 𝑡. 

3 ΕΡΜΗΣ ΤΟΥ ΠΡΑΞΙΤΕΛΗ 

Στην ενότητα αυτή αξιολογείται η αποτελεσματικότητα του προτεινόμενου συστήματος 

μόνωσης για την προστασία ενός αγάλματος που τοποθετείται στο Μουσείο της Ακρόπολης, 

έναντι σεισμικής διέγερσης. Για την ανάλυση επιλέχθηκε ένα σύνολο 20 

επιταχυνσιογραφημάτων μακρινού πεδίου (Far Field, FF) με mean PGA = 0.310𝑔 και 

max  PGA = 0.564𝑔 τα οποία περιλαμβάνουν δέκα ζεύγη κλιμακωμένων καταγραφών από έξι 

μεγάλους σεισμούς, ο καθένας με μέγεθος μεγαλύτερο από 6.5, καθώς και επικεντρικές 

αποστάσεις που κυμαίνονται από 10 έως 20 km. Οι καταγραφές ελήφθησαν από τοποθεσίες με 

μαλακό βράχο ή σκληρό έδαφος, και κλιμακώθηκαν ώστε να ευθυγραμμίζονται με τον ΕΑΚ για 

κατηγορία εδάφους Τύπου Β και μέγιστη επιτάχυνση 0.24𝑔 (βλ. Σχήμα 2).  

 

 

Σχήμα 2: Φάσμα επιταχύνσεων των 20 κλιμακωμένων καταγραφών. 

 

Λεπτομερή χαρακτηριστικά των καταγραφών, συμπεριλαμβανομένων των συντελεστών 

κλιμάκωσής τους, παρέχονται στον Πίνακα 1. 

 

Πίνακας 1: Λεπτομερή χαρακτηριστικά των 20 κλιμακωμένων καταγραφών. 

Record ID Seismic event Station Component Scale factor 

1,2 1992 Landers Joshua (DMG) 90, 0 1.09 

3,4  Yermo (CDMG) 270, 360 0.94 

5,6 1989 Loma Prieta Gilroy 2 (CDMG) 0, 90 1.07 

7,8  Hollister (CDMG) 0, 90 0.79 

9,10 1994 Northridge Century (CDMG) 90, 360 1.67 

11,12  Moorpark (CDMG) 180, 90 1.91 

13,14 1949 W. Washington 325 (USGS) N86E, N04W 2.01 

15,16 1954 Eureka  022 (USGS) N79E, N11W 1.27 

17,18 1971 San Fernando 241 (USGS) N00W, S90W 1.43 

19,20  458 (USGS) S00W, S90W 1.63 
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Αντλώντας έμπνευση από τον Ομ. Καθηγητή Ε.Μ.Π. κ. Βλάση Κουμούση [39], για την παρούσα 

μελέτη επιλέχθηκε ένα άγαλμα που μοιάζει με αυτό του Ερμή που κρατάει τον Διόνυσο (βλ. 

Σχήμα 3α). Αυτό το άγαλμα, που αποδίδεται στον διάσημο γλύπτη της κλασικής εποχής 

Πραξιτέλη, είναι το μόνο γνωστό έργο του που χρονολογείται από το 343 π.Χ. Εκτός από το δεξί 

χέρι του αγάλματος, τα άλλα ελλείποντα μέρη—όπως το αριστερό πόδι κάτω από το γόνατο, το 

κάτω μέρος του δεξιού ποδιού και η βάση του δέντρου—έχουν αντικατασταθεί με 

αποκαταστάσεις και στηρίγματα από γύψο. Στην τρέχουσα μορφή του, το άγαλμα, 

συμπεριλαμβανομένης της βάσης του, έχει συνολική μάζα 3008 kg. Για όλες τις μη γραμμικές 

αναλύσεις χρονοϊστορίας, το άγαλμα και η βάση του μοντελοποιήθηκαν ως ένα ισοδύναμο 

συμπαγές, ορθογωνικό σώμα από σκυρόδεμα (βλ. Σχήμα 3b) με τις ακόλουθες ιδιότητες:  
𝜌1 = 2.5 ton/m3, 𝐵 = 0.631 m, 𝐻 = 1.907 m, 𝑚1 = 3.008 ton, 𝑝 = 2.707 rad/s, και  
tan 𝛼 = 0.331. Ο σχεδιασμός λαμβάνει υπόψη τέσσερα διαφορετικά σενάρια λόγου μαζών, 

𝑚2/𝑚1 = 0.4, 0.8, 1.5, 2.5 και τρεις ιδιοπεριόδους 𝑇iso = 2.5, 3, 4 s για το σύστημα σεισμικής 

μόνωσης, με 𝜌2 = 2.5 ton/m3. Να σημειωθεί ότι, για την προστασία του Αγάλματος του Ερμή 

του Πραξιτέλη, η μάζα της βάσης υπολογίστηκε σε 𝑚2 = 2.72𝑚1 [39]. 
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Σχήμα 3: (α) Το αρχικό άγαλμα και (β) το ισοδύναμό του συμπαγές, ορθογωνικό από σκυρόδεμα (𝐵 = 0.631 m, 
𝐻 = 1.907 m). 

 

Τα γεωμετρικά χαρακτηριστικά καθώς και η απόδοση του προτεινόμενου συστήματος μόνωσης 

συνοψίζονται στους ακόλουθους Πίνακες, για κάθε μία από τις ιδιοπεριόδους 𝑇iso. Στην παρούσα 

μελέτη για την αξιολόγηση της αποτελεσματικότητας του συστήματος χρησιμοποιήθηκαν τόσο 

οι μέσες και μέγιστες τιμές του δείκτη απόδοσης, 𝑃𝐼 = |𝜃max|/𝜃𝑐𝑟, όσο και οι μέσες και μέγιστες 

οριζόντιες, |𝑎𝑀𝑥,max|/𝑔, και κατακόρυφες, |𝑎𝑀𝑧,max|/𝑔, επιταχύνσεις στο μέσο σημείο 𝑀, που 

βρίσκεται στη βάση του μπλοκ (βλ. Σχήμα 3b). Η ανάλυση γενικά αποκαλύπτει ότι η αύξηση 

του λόγου μάζας οδηγεί σε μείωση τόσο της γωνίας περιστροφής 𝜃(𝑡) όσο και των 

επιταχύνσεων, για μια δεδομένη ιδιοπερίοδο 𝑇iso του συστήματος μόνωσης. Επιπλέον, οι 

οριζόντιες και κατακόρυφες επιταχύνσεις μειώνονται—για δεδομένο λόγο μάζας—καθώς 
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αυξάνεται η ιδιοπερίοδος 𝑇iso. Αξιοσημείωτα, ο δείκτης απόδοσης (𝑃𝐼) φτάνει στην ελάχιστη 

τιμή του για 𝑇iso = 3 s. 

Πιο συγκεκριμένα, από τον Πίνακα 2 (𝑇iso = 2.5 s) συμπεραίνουμε ότι η αύξηση του λόγου 

μάζας, 𝑚2/𝑚1, του συστήματος μόνωσης έχει ως αποτέλεσμα τη μείωση 53% στον μέσο δείκτη 

απόδοσης, mean 𝑃𝐼, μεταξύ λόγου μαζών 0.4 και 2.5. Για την ίδια σύγκριση, η αντίστοιχη 

μείωση στον μέγιστο δείκτη απόδοσης, maximum 𝑃𝐼, είναι 48%. Επιπλέον, οι μειώσεις στην 

επιτάχυνση στο σημείο M έχουν ως εξής: 22% και 32% για τις μέσες και μέγιστες οριζόντιες 

επιταχύνσεις και 53% και 45% για τις μέσες και μέγιστες κατακόρυφες επιταχύνσεις, αντίστοιχα.  

 

Πίνακας 2: Γεωμετρικά χαρακτηριστικά και δείκτες αποδόσεις του προτεινόμενου συστήματος μόνωσης για 

ιδιοπερίοδο 𝑇iso = 2.5 s και λόγους μαζών 𝑚2/𝑚1 = 0.4, 0.8,1.5,2.5. 

 𝑚2 = 0.4𝑚1 𝑚2 = 0.8𝑚1 𝑚2 = 1.5𝑚1 𝑚2 = 2.5𝑚1 

𝑅 (m) 1.935 1.996 2.157 2.449 

𝜃0 (rad) 0.591 0.740 0.879 0.968 

𝑏 (m) 2.157 2.690 3.323 4.036 

ℎ (m) 0.329 0.521 0.781 1.061 

𝑅/𝑟𝐺  2.009 1.922 1.820 1.719 

𝐼𝐺  (ton∙m2) 2.320 3.771 6.740 12.258 

𝜃𝑐𝑟 (rad) 1.033 1.257 1.457 1.589 

𝑓sup 0.650 0.594 0.528 0.463 

mean |𝜃max|/𝜃𝑐𝑟  0.265 0.200 0.156 0.124 

max |𝜃max| /𝜃𝑐𝑟   0.634 0.520 0.423 0.331 

mean |𝑎𝑀𝑥,max|/𝑔 0.238 0.214 0.195 0.186 

max |𝑎𝑀𝑥,max|/𝑔 0.425 0.366 0.303 0.287 

mean |𝑎𝑀𝑧,max|/𝑔 0.113 0.090 0.069 0.053 

max |𝑎𝑀𝑧,max|/𝑔 0.426 0.390 0.324 0.236 

 

Ομοίως, από τον Πίνακα 3 (𝑇iso = 3 s) προκύπτει ότι οι μειώσεις στον μέσο και μέγιστο 𝑃𝐼 

μεταξύ των ίδιων σεναρίων λόγου μαζών (0.4 και 2.5) είναι 53% και 44%, αντίστοιχα. Οι 

μειώσεις στις οριζόντιες επιταχύνσεις είναι 30% (μέσος όρος) και 23% (μέγιστο), ενώ οι μειώσεις 

στις κατακόρυφες επιταχύνσεις είναι 61% (μέσος όρος) και 59% (μέγιστο). 

 

Πίνακας 3: Γεωμετρικά χαρακτηριστικά και δείκτες αποδόσεις του προτεινόμενου συστήματος μόνωσης για 

ιδιοπερίοδο 𝑇iso = 3 s και λόγους μαζών 𝑚2/𝑚1 = 0.4, 0.8,1.5,2.5. 

 𝑚2 = 0.4𝑚1 𝑚2 = 0.8𝑚1 𝑚2 = 1.5𝑚1 𝑚2 = 2.5𝑚1 

𝑅 (m) 1.669 1.720 1.852 2.085 

𝜃0 (rad) 0.656 0.824 0.987 1.098 

𝑏 (m) 2.036 2.524 3.089 3.712 
ℎ (m) 0.347 0.552 0.830 1.135 
𝑅/𝑟𝐺  2.450 2.331 2.195 2.062 

𝐼𝐺  (ton∙m2) 2.305 3.717 6.544 11.658 
𝜃𝑐𝑟  (rad) 1.009 1.242 1.456 1.604 

𝑓sup 0.649 0.595 0.534 0.475 
mean |𝜃max|/𝜃𝑐𝑟   0.259 0.196 0.151 0.122 
max |𝜃max| /𝜃𝑐𝑟  0.661 0.531 0.434 0.367 

mean |𝑎𝑀𝑥,max|/𝑔 0.236 0.211 0.183 0.165 

max |𝑎𝑀𝑥,max|/𝑔 0.430 0.372 0.337 0.329 

mean |𝑎𝑀𝑧,max|/𝑔 0.077 0.058 0.041 0.030 

max |𝑎𝑀𝑧,max|/𝑔 0.347 0.229 0.178 0.144 
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Για το σύστημα μόνωσης με ιδιοπερίοδο απομόνωσης 𝑇iso = 4 s (βλ. Πίνακα 4), είναι 

ενδιαφέρον να παρατηρηθεί ότι το σενάριο λόγου μάζας 𝑚2/𝑚1 = 0.4 παρουσιάζει μέγιστο 𝑃𝐼 

μεγαλύτερο από 1 (υποβαλλόμενο στην καταγραφή #19), υποδεικνύοντας αστοχία του 

συστήματος. Ωστόσο, ο μέσος 𝑃𝐼 παραμένει πολύ κάτω από 1, με τιμή 0.325. Συγκρίνοντας τις 

επιταχύνσεις στο σημείο 𝑀 μεταξύ σεναρίων λόγου μαζών 0.4 και 2.5, οι μειώσεις είναι 42% 

(μέσος όρος) και 49% (μέγιστο), για οριζόντιες επιταχύνσεις, και 77% (μέσος όρος) και 86% 

(μέγιστο) για κατακόρυφες επιταχύνσεις. 

 

Πίνακας 4: Γεωμετρικά χαρακτηριστικά και δείκτες αποδόσεις του προτεινόμενου συστήματος μόνωσης για 

ιδιοπερίοδο 𝑇iso = 4 s και λόγους μαζών 𝑚2/𝑚1 = 0.4, 0.8,1.5,2.5. 

 𝑚2 = 0.4𝑚1 𝑚2 = 0.8𝑚1 𝑚2 = 1.5𝑚1 𝑚2 = 2.5𝑚1 

𝑅 (m) 1.401 1.442 1.549 1.732 
𝜃0 (rad) 0.744 0.939 1.135 1.279 

𝑏 (m) 1.896 2.328 2.808 3.317 
ℎ (m) 0.370 0.591 0.895 1.233 
𝑅/𝑟𝐺  3.568 3.363 3.140 2.924 

𝐼𝐺  (ton∙m2) 2.293 3.669 6.371 11.116 
𝜃𝑐𝑟  (rad) 0.978 1.223 1.457 1.627 

𝑓sup 0.646 0.595 0.538 0.484 
mean |𝜃max|/𝜃𝑐𝑟   0.325 0.230 0.169 0.134 
max |𝜃max| /𝜃𝑐𝑟  1.273 0.746 0.481 0.375 

mean |𝑎𝑀𝑥,max|/𝑔 0.233 0.199 0.162 0.134 

max |𝑎𝑀𝑥,max|/𝑔 0.424 0.359 0.284 0.218 

mean |𝑎𝑀𝑧,max|/𝑔 0.062 0.040 0.024 0.014 

max |𝑎𝑀𝑧,max|/𝑔 0.355 0.175 0.080 0.049 
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Σχήμα 4: Χρονοϊστορίες του λόγου 𝜃(𝑡)/𝜃𝑐𝑟  για το προτεινόμενο σύστημα μόνωσης με 𝑇iso = 3 s και τα τέσσερα 

σενάρια λόγου μαζών—(a) 𝑚2/𝑚1 = 0.4, (b) 𝑚2/𝑚1 = 0.8, (c) 𝑚2/𝑚1 = 1.5, και (d) 𝑚2/𝑚1 = 2.5. Σεισμική 

διέγερση #19, 1971 Σαν Φερνάντο, 458 (USGS), S00W. 
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Τέλος, οι χρονοϊστορίες του λόγου 𝜃(𝑡)/𝜃𝑐𝑟 για τα τέσσερα σενάρια λόγου μαζών—(a) 
𝑚2/𝑚1 = 0.4, (b) 𝑚2/𝑚1 = 0.8, (c) 𝑚2/𝑚1 = 1.5, και (d) 𝑚2/𝑚1 = 2.5—παρουσιάζονται 

στο Σχήμα 4 και στο Σχήμα 5 για ιδιοπεριόδους 𝑇iso = 3 s και 𝑇iso = 4 s, αντίστοιχα. Η διέγερση 

του εδάφους αντιστοιχεί στην καταγραφή #19 από τον σεισμό του Σαν Φερνάντο του 1971, 458 

(USGS), S00W. 
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Σχήμα 5: Χρονοϊστορίες του λόγου 𝜃(𝑡)/𝜃𝑐𝑟  για το προτεινόμενο σύστημα μόνωσης με 𝑇iso = 4 s και τα τέσσερα 

σενάρια λόγου μαζών—(a) 𝑚2/𝑚1 = 0.4, (b) 𝑚2/𝑚1 = 0.8, (c) 𝑚2/𝑚1 = 1.5, και (d) 𝑚2/𝑚1 = 2.5. Σεισμική 

διέγερση #19, 1971 Σαν Φερνάντο, 458 (USGS), S00W. 

4 ΣΥΜΠΕΡΑΣΜΑΤΑ 

Στην εργασία αυτή διερευνήθηκε η αποτελεσματικότητα ενός νέου συστήματος σεισμικής 

μόνωσης για την προστασία στερεών σωμάτων, ιδιαίτερα των μεγάλων αντικειμένων τέχνης. Η 

λειτουργία του προτεινόμενου συστήματος σεισμικής μόνωσης βασίζεται στον μηχανισμό της 

κύλισης (rolling isolation system, RIS). Το στερεό σώμα είναι άκαμπτα συνδεδεμένο με μία 

καμπύλη βάση (τόξο κύκλου), η οποία μπορεί να κυλίεται ελεύθερα, χωρίς να ολισθαίνει, 

εκτελώντας ταλάντωση γύρω από τη θέση ισορροπίας της. Το προτεινόμενο σύστημα 

παρουσιάζει πλεονεκτική συμπεριφορά έναντι του λικνισμού διότι μετατρέπει τη μεταφορική 

κίνηση σε περιστροφική. Οι αναλύσεις έδειξαν ότι καθώς αυξάνεται ο λόγος μάζας, τόσο η γωνία 

περιστροφής όσο και η γωνιακή ταχύτητα μειώνονται—για δεδομένη ιδιοπερίοδο—ως 

αποτέλεσμα της μείωσης του κέντρου μάζας. Επιπλέον, οι οριζόντιες και κατακόρυφες 

επιταχύνσεις μειώνονται—για δεδομένο λόγο μάζας—όσο η ιδιοπερίοδος του συστήματος 

αυξάνεται. 
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